Synthesis of a regio-isomer of kealiiquinone, a marine benzimidazole alkaloid

PERKIN

Seikou Nakamura,
" Naoki Tsuno," Masayuki Yamashita," Ikuo Kawasaki," Shunsaku Oh
ta $^{\star a}$ and Yoshitaka Ohishi b

^a Kyoto Pharmaceutical University, Misasagi Yamashinaku, Kyoto 607-8414, Japan

Received (in Cambridge, UK) 18th September 2000, Accepted 3rd January 2001 First published as an Advance Article on the web 31st January 2001

Treatment of 1,3-dialkyl-2-(phenylthio)benzimidazolium salts 3 and 1,3-dialkyl-2-phenylthio-1H-imidazolium salts 7 with aq. K_2CO_3 gives 1,3-dialkyl-1,3-dihydrobenzimidazol-2-ones 4 and 1,3-dialkyl-1,3-dihydroimidazol-2-ones 8, respectively, in 22–94% yield. A regio-isomer 17 of kealiiquinone, a marine benzimidazole alkaloid, where the 4-methoxyphenyl group at the 4-position migrates to the 9-position, is synthesized by application of the reaction. Cytotoxity of 17 and kealiiquinone against 39 human cancer cells is evaluated. They have weak activity but a unique mechanism of action.

Recently, many marine imidazole and benzimidazole alkaloids have been isolated from sponges, and their antitumour and antibacterial activities have been investigated. Hitherto, we have reported the total syntheses of several marine imidazole and benzimidazole alkaloids such as nortopsentins A–D, topsentin, kealiiquinone, clathridine A, naamine A, and naamidine A, which are shown in Fig 1.

In this paper, we would like to report the development of a new method for the introduction of an oxo group into the 2-position of imidazole and benzimidazole rings, and its application to the preparation of a regio-isomer 17 of kealiiquinone, the biological activity of which has not been reported.

Results and discussion

DOI: 10.1039/b007560o

1-Methyl-2-(phenylthio)benzimidazole **2** was prepared in 71% yield by lithiation of 1-methylbenzimidazole **1** with *n*-BuLi followed by treatment with diphenyl disulfide. The sulfide **2**

was refluxed with benzyl bromide to yield the corresponding benzimidazolium salt **3a** in 70% yield. A solution of the salt **3a** in aq. K₂CO₃ was stirred at 80 °C for 3 h to give 1-benzyl-3-methyl-1,3-dihydrobenzimidazol-2-one **4a** in 81% yield as shown in Scheme 1. After the sulfide **2** had been refluxed with either 2-(trimethylsilyl)ethoxymethyl chloride (SEMCl) or allyl bromide, attempts to obtain pure benzimidazolium salts **3b** and **3c** failed. However, subsequent treatment of the crude salts **3b** and **3c** with aq. K₂CO₃ gave the 1,3-dihydrobenzimidazol-2-ones **4b** and **4c** in 94 and 51% yield, respectively, from **2**. The SEM group of **4b** could be readily removed in 70% yield by treatment with tetrabutylammonium fluoride (TBAF) in tetrahydrofuran (THF) to give 1-methylbenzimidazolidin-2-one **5**, which was also obtained by hydrogenolysis of **4a** in the presence of Pd catalyst in 31% yield (Scheme 1).

As shown in Scheme 1 and Table 1, some imidazoles 6 could be quaternized with various alkyl halides and the obtained crude 1,3-dialkyl-1*H*-imidazolium salts 7a-h were subjected to

Nortopsentin A
$$X^1 = X^2 = Br$$

Nortopsentin A $X^1 = X^2 = Br$

B $X^1 = Br, X^2 = H$

C $X^1 = H, X^2 = Br$

D $X^1 = X^2 = H$

C $X^1 = H, X^2 = H$

C $X^1 = H, X^2 = H$

Naamine A

Naamine A

Naamidine A

Fig. 1

J. Chem. Soc., Perkin Trans. 1, 2001, 429-436

^b Faculty of Pharmaceutical Science, Mukogawa Women's University, Nishinomiya 663-8171, Japan

 Table 1
 Synthesis of 1,3-dialkyl-1,3-dihydroimidazol-2-ones 8

	Imidazolium salt ^a				Product	
Entry	Compd.	R ¹	R ²	X	Compd.	Isolated yield (%) ^b
1	7a	CH ₃	CH ₃	I	8a	76
2	7b ^c	CH_3	$C_6 H_5 CH_2$	Br	8b	76 ^d
3	7c	CH ₃	SEM	Cl	8c	77
4	7 d	CH ₃	}	Br	8d	71
5	7e	MOM	SEM	Cl	8e	26 e
6	7f	MOM	$C_6H_5CH_2$	Br	8f	22
7	7g	\$ \	SEM	Cl	8g	945
8	7h	\$/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	$C_6H_5CH_2$	Br	8h	75 ^f

^a Crude salts were used except for **7b**. ^b The yields are calculated on the basis of 1-alkyl-1*H*-imidazoles **6**. ^c Crude **7b** was purified by recrystallization from AcOEt–*n*-hexane. Isolated yield 89%. ^d Isolated yield from **7b**. ^e A by-product (**9**; R = SEM) was also obtained in 14% yield. ^f Total yield of Z and E isomers (ratio ≈1:1).

similar alkaline hydrolysis with aq. $\rm K_2CO_3$ as that used for 3 to give 1,3-dialkyl-1,3-dihydroimidazol-2-ones $\rm 8a-d$, $\rm 8g$ and $\rm 8h$ in 71–94% yield, but only low yields in the cases where $\rm R^1$ (or $\rm R^2$) = methoxymethyl group (MOM) ($\rm 8e$, $\rm 8f$). A small amount of 2-phenylthio-1-[2-(trimethylsilyl)ethoxymethyl]-1 $\rm H$ -imidazole 4,8 9 was obtained along with the main product $\rm 8e$ in the case of Entry 5. It is suggested that the low yields of $\rm 8e$ and $\rm 8f$ might be due to deprotection of the 1-MOM group by small amounts of HCl generated *in situ* before and/or after quaternization.

Kealiiquinone in Fig. 1 has a unique and interesting chemical structure, but its biological activity has not been reported. ^{2e-g} So, we planned to synthesize several analogues of kealiiquinone and to examine their antitumour activity including that of the previously reported synthetic kealii-

quinone. A regio-isomer 17 of kealiiquinone was selected as a synthetic target. 1-Methyl-2-phenylthio-1*H*-imidazole **6a** was converted into the 5-substituted imidazole **10** by the previously reported procedure, and then protection of the hydroxy group of **10** by a *tert*-butyldimethylsilyl (TBDMS) group followed by bromination with *N*-bromosuccinimide (NBS) gave the bromide **11** in 41% yield from **6a**. Lithiation at the 4-position of **11** with *tert*-butyllithium followed by trapping with 3,4-dimethoxy-2-(methoxymethoxy)benzaldehyde **12** gave the tetrasubstituted imidazole **13** in 77% yield as a diastereomeric mixture (≈4:3, on the basis of ¹H NMR analysis). After acetylation of the hydroxy group of **13**, Friedel–Crafts-type cyclization with polyphosphoric acid (PPA) in the presence of acetic anhydride gave the tricycle **14** in 93% yield as pale yellow crystals. Alkaline hydrolysis of the ester group of **14** followed

by conversion of the produced phenolic hydroxy group into a TBDMSO group afforded the silyl ether **15** in 71% yield. Quaternization of **15** with benzyl bromide followed by heating in aq. K₂CO₃ successfully afforded the 2-oxo compound **16** in 51% yield as a viscous oil. The benzyl group and the TBDMS group of **16** were removed by Pd/C-catalyzed hydrogenation followed by treatment with TBAF, and then the product was autoxidized in the presence of salcomin ¹⁰ in THF to give our target compound **17** as yellow needles, mp 261–262 °C (Scheme 2). Spectral and physical data of **17** and kealiiquinone are listed in Table 2.

Growth-inhibitory activity of the regio-isomer 17 and the synthetic kealiiquinone against a panel of 39 human cancer cell lines was evaluated in the Japanese Foundation for Cancer Research. The mean concentrations of 17 required to achieve GI_{50} , TGI, and LC_{50} levels against the panel were 51.3, 91.2, and 100 μ M, respectively. Those of kealiiquinone were 39.8, 79.4, and 97.7 μ M, respectively. The Foundation has operated its screening system with the panel and the database analysis, by which anticancer activity of the tested compounds can be evaluated in not only strength but also their uniqueness in mechanism of action by comparison with the cumulated data. They reported to us on their analysis that compound 17 and the synthetic kealiiquinone both have relatively weak activity but a unique mechanism of action.

Experimental

All mps were measured with a Yanaco MP micro-melting-point apparatus and are uncorrected. IR spectra were taken with a Shimadzu IR-435 spectrometer. ¹H NMR spectra were measured on a Varian XL-300 (¹H: 300 MHz, ¹³C: 75.4 MHz) or a Varian UNITY INOVA 400NB (¹H: 400 MHz, ¹³C: 100.6 MHz) spectrometer with tetramethylsilane as internal standard, and chemical shifts δ are reported in ppm. Low-resolution mass spectra (LRMS) and high-resolution MS (HRMS) were measured on JEOL JMS-SX 102A QQ or JEOL JMS BU-20

spectrometers. Silica gel (Merck Art. 7734) was used for column chromatography.

1-Methyl-2-(phenylthio)benzimidazole 2

n-BuLi (1.6 M in n-hexane; 18.8 mL, 30.0 mmol) was added dropwise to a solution of 1-methylbenzimidazole 1 (3.97 g, 30.0 mmol) in THF (60 mL) under N₂ at -78 °C. After stirring of the mixture for 15 min at the same temperature, diphenyl disulfide (6.55 g, 30.0 mmol) was added and the whole was stirred for 30 min at -78 °C. The mixture was acidified with 10% HCl and washed with diethyl ether. The aqueous layer was basified with K₂CO₃ powder and extracted with AcOEt. The organic layer was dried over anhydrous sodium sulfate and evaporated to give an oily residue, which was purified by column chromatography (AcOEt–n-hexane 1:1) to give sulfide 2 (5.11, 71%), mp 65–67 °C (colourless needles, recrystallized from *n*-hexane); v_{max} (CHCl₃) 2947, 1579, 1439, 1323, 1078 cm^{-1} ; δ_{H} (400 MHz; CDCl₃) 3.74 (s, 3H, NCH₃), 7.23–7.38 (m, 8H, ArH), 7.76–7.79 (m, 1H, ArH); $\delta_{\rm C}$ (100.6 MHz; CDCl₃) 30.8, 109.4, 119.9, 122.4, 123.2, 127.6, 129.4, 130.2, 132.2, 136.5, 143.1, 147.6 (Calc. for C₁₄H₁₂N₂S: C, 69.97; H, 5.03; N, 11.66. Found: C, 69.84; H, 5.06; N, 11.37%. HRMS m/z Calc. for $C_{14}H_{12}N_2S$: M, 240.0721. Found: M^+ , 240.0711).

1-Benzyl-3-methyl-2-(phenylthio)benzimidazolium bromide 3a

A mixture of sulfide **2** (100 mg, 0.42 mmol) and benzyl bromide (0.07 mL, 0.62 mmol) in AcOEt (1 mL) was refluxed under stirring for 3 h. The solvent was evaporated off to give a solid mass, which was recrystallized from AcOEt–Pr¹OH to give salt **3a** (97 mg, 70%), mp 160–164 °C (colourless needles); ν_{max} (KBr) 3014, 1471, 776, 562 cm⁻¹; δ_{H} (400 MHz; DMSO- d_{e}) 4.06 (s, 3H, NCH₃), 5.87 (s, 2H, NCH₂Ar), 7.17–8.09 (m, 14H, ArH); δ_{C} (100.6 MHz; DMSO- d_{e}) 34.1, 54.1, 113.7, 114.0, 114.3, 127.5, 127.7, 127.9, 128.5, 129.0, 129.8, 130.5, 131.5, 131.9, 133.0, 134.1, 147.1 [Calc. for C₂₁H₁₉BrN₂S: C, 61.31; H, 4.66; N, 6.81. Found: C, 60.89; H, 4.93; N, 6.46%. HRMS mlz

 Table 2
 Physical and spectral data of kealiiquinone and 17

Kealiiquinone X = H, Y = 4-methoxyphenyl, Regio-isomer (17) X = 4-methoxyphenyl, Y = H

			Kealiiquinone ⁵		Regioisomer 17 of kealiiquinone		
	Appearance Mp IR: $\nu_{\rm max}/{\rm cm}^{-1}$ in CHCl ₃ UV (MeOH) $\lambda_{\rm max}$ (log ε)		Orange needles 290–292 °C 1719, 1657, 1624, 1511, 1458, 1339, 1302, 1243, 1219, 1172, 1103, 1053 209 (4.53), 286 (4.63), 369 (3.48)		Yellow needles		
					261–262 °C		
					2984, 1706, 1662, 1624, 1510, 1457, 1345, 1285, 1242, 1172, 1067, 1032		
					203 (4.57), 287 (4. 360 (3.47)		
		Position	¹H	¹³ C	¹H	¹³ C	
	NMR in DMSO- d_6 [δ (ppm)]	2 3a 4 4a 5 6 7 8 8a 9 9a 10 11 12 1' 2', 6' 3', 5' 4'	7.68 (s, 1H) 3.39 (s, 3H) 3.94 (s, 3H) 3.85 (s, 3H) 7.13 (d, 2H) ^a 6.98 (d, 2H) ^a 3.82 (s, 3H)	154.76 133.97 126.46 122.64 181.31 147.79 132.60 181.13 123.49 104.56 129.86 26.80 60.76 60.76 126.50 127.66 113.89 158.53 55.04	7.55 (s, 1H) 3.33 (s, 3H) 3.83 (s, 3H) 3.92 (s, 3H) 7.19 (d, 2H) ^a 6.97 (d, 2H) ^a 3.83 (s, 3H)	155.01 132.25 105.84 124.12 181.17 133.30 148.08 181.34 123.12 126.46 145.36 29.06 60.95 60.95 127.99 130.76 113.22 158.83 55.26	
$^{a}J = 8.8 \text{ Hz}.$		3-NH	11.03 (br, 1H)		11.73 (br, 1H)		

Calc. for $C_{21}H_{19}N_2S$ (M-Br), 331.1269. Found: 331.1278 (M-Br)⁺].

1-Benzyl-3-methyl-1,3-dihydrobenzimidazol-2-one 4a

A mixture of salt **3a** (50 mg, 0.15 mmol) and aq. K₂CO₃ (41 mg, 0.30 mmol in 1 mL) was stirred at 80 °C for 3 h. The mixture was extracted with AcOEt, and the organic layer was dried over anhydrous sodium sulfate and evaporated to give an oily residue, which was purified by column chromatography (AcOEt–*n*-hexane 1:1) to give the urea **4a** (29 mg, 81%), mp 87–88 °C (colourless needles from AcOEt–*n*-hexane); v_{max} (CHCl₃) 2981, 1687, 1494, 1171, 555 cm⁻¹; δ_{H} (400 MHz; CDCl₃) 3.47 (s, 3H, NCH₃), 5.08 (s, 2H, NCH₂Ar), 6.86–7.33 (m, 9H, ArH); δ_{C} (100.6 MHz; CDCl₃) 27.1, 44.8, 107.3, 108.1, 121.1, 121.2, 127.4, 127.5, 128.6, 129.1, 130.0, 136.3, 154.4 (Calc. for C₁₅H₁₄N₂O: C, 75.61; H, 5.92; N, 11.76. Found: C, 75.83; H, 5.95; N, 11.31%. HRMS m/z Calc. for C₁₅H₁₄N₂O: M, 238.1106. Found: M⁺, 238.1104).

1-Methyl-3-[2-(trimethylsilyl)ethoxymethyl]-1,3-dihydrobenzimidazol-2-one 4b

A mixture of sulfide 2 (400 mg, 1.66 mmol) and SEMCl (0.44 mL, 2.50 mmol) in AcOEt (2 mL) was refluxed with stirring for 3 h. The solvent was evaporated off to give benzimidazolium

salt **3b**. A mixture of the benzimidazolium salt and aq. K_2CO_3 (460 mg, 3.33 mmol in 2 mL) was stirred at 80 °C for 3 h. The mixture was extracted with AcOEt, and the organic layer was dried over anhydrous sodium sulfate and evaporated to give an oily residue, which was purified by column chromatography (AcOEt–n-hexane 1:1) to afford the urea **4b** as a colourless, viscous oil (435 mg, 94%); v_{max} (CHCl₃) 2950, 1697, 1493, 1247, 1072, 834 cm⁻¹; δ_{H} (400 MHz; CDCl₃) -0.04 [s, 9H, Si(CH₃)₃], 0.92 (t, J 8.2 Hz, 2H, CH₂CH₂Si), 3.43 (s, 3H, NCH₃), 3.61 (t, J 8.2 Hz, 2H, CH₂CH₂Si), 5.32 (s, 2H, NCH₂O), 6.98–7.19 (m, 4H, ArH); δ_{C} (100.6 MHz; CDCl₃) -1.45, 17.8, 27.1, 66.1, 70.7, 107.4, 108.7, 121.5, 121.9, 128.8, 130.1, 154.4 (HRMS m/z Calc. for C₁₄H₂₂N₂O₂Si: M, 278.1450. Found: M⁺, 278.1454).

1-Allyl-3-methyl-1,3-dihydrobenzimidazol-2-one 4c

This was prepared in a similar manner as that used for the preparation of **4b** except for use of allyl bromide (0.22 mL, 2.50 mmol) instead of SEMCl. Title compound was obtained as a colourless, viscous oil (160 mg, 51%); v_{max} (CHCl₃) 2930, 1686, 1494, 1124, 925, 563 cm⁻¹; δ_{H} (400 MHz; CDCl₃) 3.43 (s, 3H, NCH₃), 4.51 (dt, J 5.3, 1.7 Hz, 2H, NCH₂CH), 5.20 (ddt, J 1.3, 16.9, 1.6 Hz, 1H, CH=CH₂), 5.23 (ddt, J 1.1, 10.6, 1.6 Hz, 1H, CH=CH₂), 5.90 (ddt, J 9.8, 17.7, 5.4 Hz, 1H, CH=CH₂), 6.95–

7.12 (m, 4H, ArH); $\delta_{\rm C}$ (100.6 MHz; CDCl₃) 27.1, 43.5, 107.3, 108.1, 117.4, 121.1, 121.2, 129.2, 130.0, 132.0, 154.2 (HRMS m/z Calc. for C₁₁H₁₂N₂O: M, 188.0950. Found: M⁺, 188.0946).

1-Methyl-1,3-dihydrobenzimidazol-2-one 5

(a) Synthesis from 4a. A mixture of 4a (42 mg, 0.18 mmol) and 20% Pd(OH)₂–C (400 mg) in EtOH (2 mL) was stirred for 24 h under H₂ (4 kg cm⁻²) at room temperature. After filtration, the filtrate was evaporated. The crude product was purified by column chromatography (AcOEt–n-hexane 1:2) to give title compound 5 as a colourless, viscous oil (8 mg, 31%); $\nu_{\rm max}$ (CHCl₃) 3400, 2979, 1686, 1495, 1123, 560 cm⁻¹; $\delta_{\rm H}$ (400 MHz; CDCl₃) 3.43 (s, 3H, NCH₃), 6.96–7.15 (m, 4H, ArH), 10.57 (s, 1H, NH); $\delta_{\rm C}$ (100.6 MHz; CDCl₃) 26.8, 107.6, 109.6, 121.2, 121.6, 128.0, 130.9, 156.0 (HRMS m/z Calc. for C₈H₈-N₂O: M, 148.0637. Found: M⁺, 148.0642).

(b) Synthesis from 4b. A stirred solution of 4b (126 mg, 0.45 mmol) and TBAF (1 M in THF; 0.91 mL, 0.91 mmol) in THF (1 mL) was refluxed for 3 h. After addition of water, the mixture was extracted with AcOEt. The organic layer was dried over anhydrous sodium sulfate and evaporated to give an oily residue, which was purified by column chromatography (AcOEt) to afford title compound 5 (26 mg, 70%). This compound was identical with the sample obtained in (a).

1,3-Dimethyl-1,3-dihydroimidazol-2-one 8a

A solution of sulfide **6a** (R¹ = Me; 200 mg, 1.05 mmol) and methyl iodide (0.11 mL, 1.58 mmol) in AcOEt (1 mL) was refluxed under stirring for 3 h. The solvent was evaporated off to give imidazolium salt **7a**. An analytical sample was recrystallized from acetone–Et₂O to give colourless crystals, mp 196–197 °C; ν_{max} (CHCl₃) 2920, 1561, 1497, 1228, 657 cm⁻¹; δ_{H} (400 MHz; CDCl₃) 4.06 (s, 6H, NCH₃), 7.21–7.24 (m, 2H, ArH), 7.38–7.43 (m, 3H, ArH), 8.14 (s, 2H, ArH); δ_{C} (100.6 MHz; CDCl₃) 37.6, 125.9, 128.5, 129.4, 129.9, 130.6, 139.3 (Calc. for C₁₁H₁₃IN₂S: C, 39.77; H, 3.94; N, 8.43. Found: C, 39.79; H, 3.97; N, 8.33%).

A mixture of the imidazolium salt **7a** and aq. K_2CO_3 (291 mg, 2.10 mmol in 1 mL) was stirred at 80 °C for 3 h. After cooling, the reaction mixture was extracted with AcOEt, and the organic layer was dried over anhydrous sodium sulfate and evaporated to give an oily residue, which was purified by column chromatography (CHCl₃–MeOH 20:1) to give compound **8a** as a colourless, viscous oil (90 mg, 76%); v_{max} (CHCl₃) 2968, 1671, 1479, 1231, 650 cm⁻¹; δ_{H} (400 MHz; CDCl₃) 3.25 (s, 6H, NCH₃), 6.16 (s, 2H, ArH); δ_{C} (100.6 MHz; CDCl₃) 30.3, 111.0, 153.4 (HRMS m/z Calc. for $C_5H_8N_2O$: M, 112.0637. Found: M^+ , 112.0641).

1-Benzyl-3-methyl-2-(phenylthio)imidazolium bromide 7b

A stirred solution of compound **6a** (R¹ = Me; 190 mg, 1.00 mmol) and benzyl bromide (0.18 mL, 1.50 mmol) in AcOEt (1.5 mL) was refluxed for 3 h. The solvent was evaporated off to give imidazolium salt **7b**, which was recrystallized from methyl ethyl ketone (322 mg, 89%), mp 106–107 °C (colourless crystals); ν_{max} (KBr) 3055, 1493, 1436, 1249, 730 cm⁻¹; δ_{H} (400 MHz, DMSO- d_{6}) 3.87 (s, 3H, NCH₃), 5.53 (s, 2H, NCH₂Ar), 7.24–7.39 (m, 10H, ArH), 8.10 (d, J 2.2 Hz, 1H, ArH), 8.13 (d, J 2.0 Hz, 1H, ArH); δ_{C} (100.6 MHz; DMSO- d_{6}) 37.1, 53.5, 124.9, 126.8, 128.4, 128.7, 129.1, 129.2, 129.3, 129.5, 130.5, 132.9, 138.1 (Calc. for C₁₇H₁₇BrN₂S: C, 56.51; H, 4.74; N, 7.75. Found: C, 56.35; H, 4.86; N, 7.57%).

1-Benzyl-3-methyl-1,3-dihydroimidazol-2-one 8b

This was prepared from salt **7b** in a similar manner as that used to prepare **8a**. Yield 151 mg (76%), mp 63–64 °C (colourless needles, recrystallized from *n*-hexane); v_{max} (CHCl₃) 2969, 1669, 1470, 1231, 651 cm⁻¹; δ_{H} (400 MHz; CDCl₃) 3.28 (s, 3H,

NCH₃), 4.78 (s, 2H, NC H_2 Ar), 6.10 (d, J 2.9 Hz, 1H, ArH), 6.16 (d, J 2.9 Hz, 1H, ArH), 7.25–7.35 (m, 5H, ArH); δ_C (100.6 MHz; CDCl₃) 30.3, 47.0, 109.7, 111.5, 127.5, 127.7, 128.5, 136.9, 153.2 (Calc. for C₁₁H₁₂N₂O: C, 70.19; H, 6.43; N, 14.88. Found: C, 70.35; H, 6.48; N, 14.85%. HRMS m/z Calc. for C₁₁H₁₂N₂O: M, 188.0950. Found: M⁺, 188.0955).

1-Methyl-3-[2-(trimethylsilyl)ethoxymethyl]-1,3-dihydroimid-azol-2-one 8c

This was prepared from sulfide **6a** in a similar manner as that used to prepare **8a** except for the use of SEMCl (0.28 mL, 1.58 mmol) instead of methyl iodide. The crude product was purified by column chromatography (AcOEt–n-hexane 1:1) to give compound **8c** as a colourless, viscous oil (185 mg, 77%); v_{max} (CHCl₃) 2971, 1674, 1467, 1243, 1080, 834, 652 cm⁻¹; δ_{H} (400 MHz; CDCl₃) -0.04 [s, 9H, Si(CH₃)₃], 0.88 (t, J 8.2 Hz, 2H, CH₂CH₂Si), 3.23 (s, 3H, NCH₃), 3.54 (t, J 8.2 Hz, 2H, CH₂CH₂Si), 4.97 (s, 2H, NCH₂O), 6.17 (d, J 2.9 Hz, 1H, ArH), 6.30 (d, J 3.1 Hz, 1H, ArH); δ_{C} (100.6 MHz; CDCl₃) -1.5, 17.8, 30.2, 65.9, 72.6, 109.6, 112.2, 153.4 (HRMS m/z Calc. for C₁₀H₂₀N₂O₂Si: M, 228.1294. Found: M⁺, 228.1299).

1-Allyl-3-methyl-1,3-dihydroimidazol-2-one 8d

This was prepared from sulfide **6a** in a similar manner as that used to prepare **8a** except for the use of allyl bromide (0.14 mL, 1.58 mmol) instead of methyl iodide. The crude product was purified by column chromatography (AcOEt–*n*-hexane 1:1) to give the urea **8d** as a colourless, viscous oil (98 mg, 71%); v_{max} (CHCl₃) 2971, 1673, 1470, 1230, 650 cm⁻¹; δ_{H} (400 MHz; CDCl₃) 3.27 (s, 3H, NCH₃), 4.23 (dt, *J* 5.9, 1.5 Hz, 2H, NCH₂CH), 5.19 (dq, *J* 16.9, 1.5 Hz, 1H, CH=CH₂), 5.21 (dq, *J* 10.4, 1.5 Hz, 1H, CH=CH₂), 5.87 (ddt, *J* 10.4, 16.9, 5.8 Hz, 1H, CH=CH₂), 6.18 (s, 2H, ArH); δ_{C} (100.6 MHz; CDCl₃) 30.4, 45.8, 109.7, 111.4, 117.7, 133.1, 153.1 (HRMS *mlz* Calc. for C₇H₁₀N₂O: *M*, 138.0793. Found: M⁺, 138.0789).

1-Methoxymethyl-3-[2-(trimethylsilyl)ethoxymethyl]-1,3-dihydroimidazol-2-one 8e and 2-phenylthio-1-[2-(trimethylsilyl)ethoxymethyl]imidazole 9

A stirred solution of sulfide **6b** ($R^1 = MOM$; 200 mg, 0.91 mmol) and SEMCl (0.24 mL, 1.36 mmol) in AcOEt (1 mL) was refluxed for 3 h. The solvent was evaporated off to give imidazolium salt 7e. A mixture of this imidazolium salt and aq. K₂CO₃ (251 mg, 1.82 mmol in 2 mL) was stirred at 80 °C for 3 h. The mixture was extracted with AcOEt, and the organic layer was dried over anhydrous sodium sulfate and evaporated to give an oily residue, which was purified by column chromatography (AcOEt-n-hexane 1:1). Compound 8e: Colourless, viscous oil (60 mg, 26%); v_{max} (CHCl₃) 2976, 1687, 1456, 1370, 1248, 1078, 834, 655 cm⁻¹; $\delta_{\rm H}$ (400 MHz; CDCl₃) -0.02 [s, 9H, Si(CH₃)₃], 0.92 (t, J 8.2 Hz, 2H, CH₂CH₂Si), 3.32 (s, 3H, OCH₃), 3.56 (t, J 8.2 Hz, 2H, CH₂CH₂Si), 4.98 (s, 2H, NCH₂O), 5.02 (s, 2H, NCH₂O), 6.35 (d, J 3.1 Hz, 1H, ArH), 6.37 (d, J 3.1 Hz, 1H, ArH); $\delta_{\rm C}$ (100.6 MHz; CDCl₃) -1.5, 17.8, 56.2, 66.1, 72.5, 74.3, 110.7, 110.9, 153.6 (HRMS m/z Calc. for $C_{11}H_{22}N_2O_3Si$: M, 258.1400. Found: M⁺, 258.1390).

Compound 9: Colourless viscous oil (40 mg, 14%); $\nu_{\rm max}$ (CHCl₃) 2937, 1578, 1474, 1247, 1077, 835 cm⁻¹; $\delta_{\rm H}$ (400 MHz; CDCl₃) -0.04 [s, 9H, Si(CH₃)₃], 0.83 (t, J 8.2 Hz, 2H, CH₂CH₂Si), 3.38 (t, J 8.3 Hz, 2H, CH₂CH₂Si), 5.39 (s, 2H, NCH₂O), 7.18–7.30 (m, 7H, ArH); $\delta_{\rm C}$ (75.4 MHz; CDCl₃) -1.5, 17.7, 66.4, 75.6, 122.3, 126.8, 128.3, 129.2, 130.8, 134.7, 138.3 (HRMS m/z Calc. for C₁₅H₂₂N₂OSSi: M, 306.1222. Found: M⁺, 306.1213).

1-Benzyl-3-methoxymethyl-1,3-dihydroimidazol-2-one 8f

This was prepared in a similar manner as that used to prepare 8e, except for the use of benzyl bromide (0.16 mL, 1.36 mmol)

instead of SEMCI. The crude product was purified by column chromatography (CHCl₃–MeOH 20:1) to give the urea **8f** as a colourless, viscous oil (38 mg, 22%); $\nu_{\rm max}$ (CHCl₃) 2921, 1675, 1460, 1226, 1097, 671 cm⁻¹; $\delta_{\rm H}$ (400 MHz; CDCl₃) 3.34 (s, 3H, OCH₃), 4.79 (s, 2H, NCH₂O), 5.00 (s, 2H, NCH₂Ar), 6.14 (d, *J* 3.1 Hz, 1H, ArH), 6.31 (d, *J* 3.1 Hz, 1H, ArH), 7.24–7.35 (m, 5H, ArH); $\delta_{\rm C}$ (100.6 MHz; CDCl₃) 47.1, 56.2, 74.4, 110.1, 111.1, 127.78, 127.80, 128.8, 136.7, 153.5 (HRMS *m*/*z* Calc. for C₁₂H₁₄N₂O₂: *M*, 218.1055. Found: M⁺, 218.1059).

A diastereomeric mixture of 1-(prop-1-enyl)-3-[2-(trimethylsilyl)-ethoxymethyl]-1,3-dihydroimidazol-2-one 8g

A stirred solution of sulfide **6c** ($R^1 = CH = CHCH_3$; 433 mg, 2.00 mmol) and SEMCl (0.53 mL, 3.00 mmol) in AcOEt (2 mL) was refluxed for 3 h. The solvent was evaporated off to give imidazolium salt 7g. A mixture of 7g and aq. K₂CO₃ (553 mg, 4.00 mmol in 2 mL) was stirred at 80 °C for 3 h. After cooling, the reaction mixture was extracted with AcOEt, and the organic layer was dried over anhydrous sodium sulfate and evaporated to give an oily residue. The crude product was purified by column chromatography (AcOEt-n-hexane 1:1). (Z)-8g: Colourless, viscous oil (247 mg, 49%); v_{max} (CHCl₃) 2937, 1687, 1450, 1245, 1074, 834, 653 cm⁻¹; $\delta_{\rm H}$ (400 MHz; CDCl₃) -0.04[s, 9H, Si(CH₃)₃], 0.90 (t, J 8.2 Hz, 2H, CH₂CH₂Si), 1.76 (dd, J 1.7, 7.2 Hz, 3H, CH=CHCH₃), 3.56 (t, J 8.2 Hz, 2H, CH₂CH₂Si), 5.00 (s, 2H, NCH₂O), 5.28 (dq, J 8.9, 7.3 Hz, 1H, CH=CHCH₃), 6.37 (d, J 3.1 Hz, 1H, ArH), 6.40 (dq, J 9.0, 1.8 Hz, 1H, CH=CHCH₃), 6.48 (d, J 3.1 Hz, 1H, ArH); $\delta_{\rm C}$ (100.6 MHz; CDCl₃) -1.4, 12.4, 17.9, 66.2, 72.5, 110.5, 111.0, 115.7, 122.1, 152.3 (HRMS m/z Calc. for $C_{12}H_{22}N_2O_2Si$: M, 254.1450. Found: M+, 254.1445).

(*E*)-8g: Colourless, viscous oil (231 mg, 45%); $v_{\rm max}$ (CHCl₃) 2976, 1687, 1455, 1244, 1079, 834, 651 cm⁻¹; $\delta_{\rm H}$ (400 MHz; CDCl₃) -0.04 [s, 9H, Si(CH₃)₃], 0.88 (t, *J* 8.2 Hz, 2H, CH₂CH₂Si), 1.74 (dd, *J* 1.7, 6.6 Hz, 3H, CH=CHCH₃), 3.54 (t, *J* 8.2 Hz, 2H, CH₂CH₂Si), 4.97 (s, 2H, NCH₂O), 5.45 (dq, *J* 14.3, 6.8 Hz, 1H, CH=CHCH₃), 6.35 (d, *J* 3.1 Hz, 1H, ArH), 6.43 (d, *J* 3.1 Hz, 1H, ArH), 6.67 (dq, *J* 14.5, 1.7 Hz, 1H, CH=CHCH₃); $\delta_{\rm C}$ (100.6 MHz; CDCl₃) -1.4, 15.0, 17.8, 66.1, 72.4, 107.6, 109.4, 111.4, 122.3, 151.4 (HRMS m/z Calc. for C₁₂H₂₂N₂O₂Si: M, 254.1450. Found: M⁺, 254.1444).

A diastereomeric mixture of 1-benzyl-3-(prop-1-enyl)-1,3-dihydroimidazol-2-one 8h

Similarly prepared from sulfide **6c** as used for the preparation of **8g** except for the use of benzyl bromide (0.36 mL, 3.00 mmol) instead of SEMCl. (*Z*)-**8h**: Colourless, viscous oil (168 mg, 39%); $v_{\rm max}$ (CHCl₃) 2975, 1682, 1447, 1229, 672 cm⁻¹; $\delta_{\rm H}$ (400 MHz; CDCl₃) 1.79 (dd, *J* 1.8, 7.3 Hz, 3H, CH=CHCH₃), 4.80 (s, 2H, NCH₂Ar), 5.29 (dq, *J* 9.0, 7.2 Hz, 1H, CH=CHCH₃), 6.17 (d, *J* 3.1 Hz, 1H, ArH), 6.48 (d, *J* 3.1 Hz, 1H, ArH), 6.47–6.51 (m, 1H, CH=CHCH₃), 7.26–7.37 (m, 5H, ArH); $\delta_{\rm C}$ (100.6 MHz; CDCl₃) 12.4, 47.0, 110.3, 110.6, 114.8, 122.2, 127.77, 127.84, 136.6, 152.2 (HRMS *mlz* Calc. for $C_{13}H_{14}N_2O$: *M*, 214.1106. Found: M^+ , 214.1111).

(*E*)-**8h**: Colourless, viscous oil (153 mg, 36%); $v_{\rm max}$ (CHCl₃) 2977, 1683, 1449, 1237, 647 cm⁻¹; $\delta_{\rm H}$ (400 MHz; CDCl₃) 1.78 (dd, *J* 1.8, 6.8 Hz, 3H, CH=CHCH₃), 4.79 (s, 2H, NCH₂Ar), 5.47 (dq, *J* 14.3, 6.8 Hz, 1H, CH=CHCH₃), 6.15 (d, *J* 3.1 Hz, 1H, ArH), 6.42 (d, *J* 3.1 Hz, 1H, ArH), 6.74 (dq, *J* 14.4, 1.6 Hz, 1H, CH=CHCH₃), 7.24–7.36 (m, 5H, ArH); $\delta_{\rm C}$ (100.6 MHz; CDCl₃) 14.9, 46.9, 106.9, 109.0, 111.5, 122.5, 127.72, 127.73, 128.7, 136.5, 151.3 (HRMS m/z Calc. for C₁₃H₁₄N₂O: M, 214.1106. Found: M⁺, 214.1118).

4-Bromo-5-[(tert-butyldimethylsiloxy)-(4-methoxyphenyl)-methyl]-1-methyl-2-phenylthio-1*H*-imidazole 11

A mixture of the alcohol 10 9a (prepared from 6a in 67% yield,

1.95 g, 6.00 mmol), imidazole (3.06 g, 45.0 mmol) and TBDMSCl (2.89 g, 19.2 mmol) in dimethylformamide (DMF; 16 mL) was stirred for 12 h at 60 °C. Water (10 mL) was added, and the mixture was extracted with AcOEt. The organic layer was dried over anhydrous sodium sulfate and evaporated to give an oily residue, which was purified by column chromatography (AcOEt–*n*-hexane 1:2). This product was the corresponding silyl ether of 10, a colourless, viscous oil (2.62 g, 99%); v_{max} (CHCl₃) 2938, 1505, 1246, 1067, 853 cm⁻¹; $\delta_{\rm H}$ (300 MHz; $CDCl_3$) -0.05 [s, 3H, $Si(CH_3)_2$], 0.06 [s, 3H, $Si(CH_3)_2$], 0.90 [s, 9H, Si(CH₃)₂C(C H_3)₃], 3.31 (s, 3H, NCH₃), 3.79 (s, 3H, OCH₃), 5.88 [s, 1H, ArCH(OTBDMS)Ar], 6.84–7.24 (m, 10H, ArH); $\delta_{\rm C}$ (100.6 MHz; CDCl₃) -5.1, -5.0, 18.2, 25.7, 32.1, 55.2, 68.2, 113.6, 126.3, 127.1, 127.6, 129.1, 129.3, 133.3, 135.0, 136.9, 139.4, 158.8 (HRMS m/z Calc. for $C_{24}H_{32}N_2O_2SSi$: M, 440.1954. Found: M⁺, 440.1951).

NBS (144 mg, 0.81 mmol) was added to a solution of the silyl ether (297 mg, 0.67 mmol) in THF (1 mL) under N₂ at 0 °C, and the whole was stirred for 7 h at 0 °C. Water (2 mL) was added, and the mixture was extracted with AcOEt. The organic layer was dried over anhydrous sodium sulfate and evaporated to give an oily residue, which was purified by column chromatography (AcOEt-n-hexane 1:2). Bromide 11 was a pale yellow, viscous oil (216 mg, 62%); v_{max} (CHCl₃) 2939, 1506, 1245, 1070, 852 cm⁻¹; $\delta_{\rm H}$ (300 MHz; CDCl₃) -0.05 [s, 3H, Si(CH₃)₂], 0.18 [s, 3H, $Si(CH_3)_2$, 0.91 [s, 9H, $Si(CH_3)_2C(CH_3)_3$], 3.32 (s, 3H, NCH₃), 3.79 (s, 3H, OCH₃), 6.08 [s, 1H, ArCH(OTBDMS)Ar], 6.86 (d, J 8.9 Hz, 2H, ArH), 7.06–7.25 (m, 7H, ArH); $\delta_{\rm C}$ (100.6 MHz; CDCl₃) -5.3, -5.1, 18.1, 25.8, 32.7, 55.3, 67.0, 113.8, 115.6, 126.3, 126.7, 127.9, 129.3, 132.8, 134.1, 134.2, 139.1, 158.8 (HRMS m/z Calc. for $C_{24}H_{31}BrN_2O_2SSi$: M, 518.1058. Found: M⁺, 518.1060).

5-[(tert-Butyldimethylsiloxy)-(4-methoxyphenyl)methyl]-4-{[3,4-dimethoxy-2-(methoxymethoxy)phenyl]hydroxymethyl}-1-methyl-2-phenylthio-1*H*-imidazole 13

A solution of tert-BuLi in n-pentane (1.64 M; 2.8 mL, 4.50 mmol) was added dropwise to a stirred solution of bromide 11 (1.17 g, 2.24 mmol) in diethyl ether (18 mL) under N_2 at -78 °C. Stirring was continued for 1 h, and a solution of 3,4dimethoxy-2-(methoxymethoxy)benzaldehyde 12 (1.09 g, 4.50 mmol) in diethyl ether (6 mL) was added dropwise at -78 °C. Stirring was continued for 3 h at -78 °C, water (20 mL) was added, and the mixture was extracted with AcOEt. The organic layer was dried over anhydrous sodium sulfate and evaporated to give an oily residue, which was purified by column chromatography (AcOEt–*n*-hexane 1:2) to give title compound 13, a diastereomeric mixture (≈4:3), as a pale yellow, viscous oil $(1.15~{\rm g},\,77\%);\,\nu_{\rm max}\,({\rm CHCl_3})\,3400,\,2925,\,2842,\,1604,\,1505,\,1454,$ 1278, 1244, 1164, 1064, 988, 854 cm $^{-1}$; $\delta_{\rm H}$ (300 MHz; CDCl₃) of the major isomer: -0.35 [s, 3H, Si(CH₃)₂], -0.07 [s, 3H, $Si(CH_3)_2$, 0.84 [s, 9H, $Si(CH_3)_2(CH_3)_3$], 3.34 (s, 3H, NCH₃), 3.55 (s, 3H, OCH₃), 3.78 (s, 3H, OCH₃), 3.81 (s, 3H, OCH₃), 3.85 (s, 3H, OCH₃), 5.21 (d, J 15.1 Hz, 1H, OCH₂O), 5.23 (d, J 15.1 Hz, 1H, OCH₂O), 6.30 [s, 1H, ArCH(OTBDMS)Ar], 6.34 [d, J 5.9 Hz, 1H, ArCH(OH)Ar], 6.62–7.24 (m, 11H, ArH) (HRMS m/z Calc. for $C_{35}H_{46}N_2O_7SSi$: M, 666.2795. Found: M^+ , 666.2791).

5-Acetoxy-6,7-dimethoxy-9-(4-methoxyphenyl)-1-methyl-2-phenylthio-1*H*-naphtho[2,3-*d*]imidazole 14

Triethylamine (0.48 mL, 3.43 mmol) and acetic anhydride (0.29 mL, 3.09 mmol) were added dropwise to a solution of alcohol 13 (1.15 g, 1.72 mmol) in CHCl₃ (5 mL) under N₂ at 0 °C, and the whole was stirred for 3 h at room temperature. Water (4 mL) was added, and the mixture was extracted with CHCl₃. The organic layer was dried over anhydrous sodium sulfate and evaporated to give an oily residue, which was purified by column chromatography (AcOEt–*n*-hexane 1:2) to give the

corresponding acetyl ester of **13**, a diastereomeric mixture (\approx 4:3), as a pale yellow, viscous oil (1.22 g, 81%); $v_{\rm max}$ (CHCl₃) 2937, 1725, 1506, 1474, 1285, 1241, 1213, 1067 cm⁻¹; $\delta_{\rm H}$ (400 MHz; CDCl₃) of the major isomer: -0.01 [s, 3H, Si(CH₃)₂], 0.25 [s, 3H, Si(CH₃)₂], 0.96 [s, 9H, Si(CH₃)₂C(CH₃)₃], 2.06 (s, 3H, OAc), 3.35 (s, 3H, NCH₃), 3.50 (s, 3H, OCH₃), 3.58 (s, 3H, OCH₃), 3.65 (s, 3H, OCH₃), 3.83 (s, 3H, OCH₃), 5.22 (d, *J* 11.5 Hz, 1H, OCH₂O), 5.23 (d, *J* 11.7 Hz, 1H, OCH₂O), 6.22–7.62 (m, 13H, ArCH × 2 and ArH) (HRMS m/z Calc. for C₃₇H₄₈N₂O₈SSi: M, 708.2900. Found: M⁺, 708.2897).

PPA (0.3 mL) was added to a solution of the acetyl ester (140 mg, 0.20 mmol) in acetic anhydride (2 ml) under N₂ at 0 °C, and the whole was stirred for 12 h. Saturated aq. NaHCO3 was added to neutralize the mixture, which was then extracted with AcOEt. The organic layer was dried over anhydrous sodium sulfate and evaporated to give an oily residue, which was purified by column chromatography (AcOEt). The product was recrystallized from AcOEt–*n*-hexane to afford title compound **14** (95 mg, 93%), mp 167–168 °C (pale yellow crystals); v_{max} (CHCl₃) 2930, 1759, 1456, 1201, 1074, 1017, 834 cm⁻¹; $\delta_{\rm H}$ (300) MHz; CDCl₃) 2.49 (s, 3H, OAc), 3.22 (s, 3H, NCH₃), 3.71 (s, 3H, OCH₃), 3.91 (s, 3H, OCH₃), 3.93 (s, 3H, OCH₃), 6.75 (s, 1H, ArH), 7.05 (d, J 8.8 Hz, 2H, ArH), 7.32-7.39 (m, 5H, ArH), 7.51–7.55 (m, 2H, ArH), 8.04 (s, 1H, ArH); $\delta_{\rm C}$ (100.6 MHz; CDCl₃) 20.6, 33.0, 55.3, 55.5, 60.8, 102.4, 109.1, 113.7, 118.7, 120.3, 127.5, 128.0, 128.5, 129.5, 130.0, 132.2, 132.3, 134.6, 138.2, 139.2, 142.1, 151.2, 154.6, 159.4, 169.1 (Calc. for C₂₉H₂₆N₂O₅S: C, 67.69; H, 5.09; N, 5.44. Found: C, 67.60; H, 5.10; N, 5.48%. HRMS m/z Calc. for $C_{29}H_{26}N_2O_5S$: M, 514.1562. Found: M⁺, 514.1552).

5-(*tert*-Butyldimethylsiloxy)-6,7-dimethoxy-9-(4-methoxy-phenyl)-1-methyl-2-phenylthio-1*H*-naphtho[2,3-*d*]imidazole 15

Potassium carbonate (81 mg, 0.58 mmol) was added to a solution of acetate 14 (100 mg, 0.19 mmol) in MeOH-water (5:1) (3 mL) at 0 °C, and the whole was stirred for 3 h at room temperature. The mixture was extracted with CHCl₃, and the organic layer was dried over anhydrous sodium sulfate and evaporated to give an oily residue. A mixture of the residue, imidazole (66 mg, 0.97 mmol), and TBDMSCl (88 mg, 0.58 mmol) in DMF (1 mL) was stirred for 6 h under N₂ at 60 °C. Water (2 ml) was added, and the mixture was extracted with diethyl ether. The organic layer was dried over anhydrous sodium sulfate and evaporated to give an oily residue, which was purified by column chromatography (CHCl3-MeOH 100:1) to give compound 15 (80 mg, 71%), mp 183-184 °C (pale yellow crystals, recrystallized from AcOEt-n-hexane); v_{max} (CHCl₃) 2918, 1458, 1251, 1100, 834 cm⁻¹; δ_{H} (400 MHz; $CDCl_3$) 0.29 [s, 6H, $Si(CH_3)_2$], 1.13 [s, 9H, $Si(CH_3)_2C(CH_3)_3$], 3.19 (s, 3H, NCH₃), 3.71 (s, 3H, OCH₃), 3.82 (s, 3H, OCH₃), 3.91 (s, 3H, OCH₃), 6.50 (s, 1H, ArH), 7.03 (d, J 8.6 Hz, 2H, ArH), 7.37–7.40 (m, 7H, ArH), 8.50 (s, 1H, ArH); $\delta_{\rm C}$ (100.6 MHz; CDCl₃) -4.0, 18.9, 26.3, 33.3, 55.3, 55.4, 60.7, 97.5, 111.6, 113.6, 118.6, 122.4, 127.7, 128.4, 128.6, 129.5, 130.4, 132.0, 132.4, 134.3, 136.3, 141.2, 143.6, 151.4, 152.1, 159.3 (Calc. for C₃₃H₃₈N₂O₄SSi: C, 67.54; H, 6.53; N, 4.77. Found: C, 67.27; H, 6.64; N, 4.78%. HRMS m/z Calc. for C₃₃H₃₈N₂O₄SSi: M, 586.2321. Found: M⁺, 586.2316).

3-Benzyl-5-(tert-butyldimethylsiloxy)-6,7-dimethoxy-9-(4-methoxyphenyl)-1-methyl-1,3-dihydronaphtho[2,3-d]imidazol-2-one 16

A mixture of compound 15 (24 mg, 0.04 mmol) and benzyl bromide (0.008 mL, 0.06 mmol) in AcOEt (0.8 mL) was refluxed with stirring for 6 h. The solvent was evaporated off to give the corresponding benzimidazolium salt. A mixture of the benzimidazolium salt and aq. $\rm K_2CO_3$ (12 mg, 0.08 mmol in 1.0 mL) was stirred at 80 °C for 1 h. The mixture was extracted with AcOEt, and the organic layer was dried over anhydrous sodium

sulfate and evaporated to give an oily residue, which was purified by column chromatography (CHCl₃–MeOH 20:1) to afford the urea **16** as a colourless, viscous oil (12 mg, 51%); v_{max} (CHCl₃) 1692, 1460, 1104 cm⁻¹; δ_{H} (400 MHz; CDCl₃) 0.16 [s, 6H, Si(CH₃)₂], 1.02 [s, 9H, Si(CH₃)₂C(CH₃)₃], 2.92 (s, 3H, NCH₃), 3.66 (s, 3H, OCH₃), 3.76 (s, 3H, OCH₃), 3.92 (s, 3H, OCH₃), 5.14 (s, 2H, NCH₂Ar), 6.42 (s, 1H, ArH), 7.03 (d, J 8.6 Hz, 2H, ArH), 7.25–7.39 (m, 7H, ArH), 7.48 (s, 1H, ArH); δ_{C} (100.6 MHz; CDCl₃) –4.3, 18.8, 26.1, 29.8, 45.0, 55.3, 55.4, 60.6, 98.6, 99.0, 113.5, 117.4, 120.2, 127.0, 127.2, 127.6, 127.7, 128.0, 128.1, 128.8, 132.5, 136.3, 136.6, 143.0, 151.2, 156.0, 159.4 (HRMS mlz Calc. for C₃₄H₄₀N₂O₅Si: M, 584.2706. Found: M⁺, 584.2708).

Regioisomer 17 of kealiiquinone

A mixture of compound 16 (8 mg, 0.0014 mmol) and 20% Pd(OH)₂/C (4 mg) in EtOH (0.4 mL) was stirred for 48 h under H_2 (4.2 kg cm⁻²) at room temperature. The catalyst was removed by filtration with AcOEt and the filtrate was evaporated to give an oily residue, which was purified by column chromatography (CHCl₃-MeOH 20:1). This product was the corresponding 3-unsubstituted naphthoimidazole (2 mg, 29%), mp 290-291 °C (pale yellow crystals, recrystallized from AcOEt–*n*-hexane); v_{max} (CHCl₃) 3200, 2916, 1704, 1459, 1243, 1113, 1077, 830 cm⁻¹; δ_{H} (400 MHz; CDCl₃) 0.26 [s, 6H, $Si(CH_3)_2$], 1.10 [s, 9H, $Si(CH_3)_2C(CH_3)_3$], 2.87 (s, 3H, NCH₃), 3.69 (s, 3H, OCH₃), 3.80 (s, 3H, OCH₃), 3.93 (s, 3H, OCH₃), 6.44 (s, 1H, ArH), 7.03 (d, J 8.8 Hz, 2H, ArH), 7.32 (d, J 8.8 Hz, 2H, ArH), 7.67 (s, 1H, ArH), 9.09 (s, 1H, NH); $\delta_{\rm C}$ (100.6 MHz; $CDCl_3$) -4.2, 18.9, 26.2, 29.3, 55.3, 55.4, 60.6, 98.6, 99.7, 113.5, 117.5, 120.4, 126.2, 127.6, 127.9, 129.1, 132.5, 136.7, 143.1, 151.2, 156.0, 159.4 (Calc. for C₂₇H₃₄N₂O₅Si: C, 65.56; H, 6.93; N, 5.66. Found: C, 65.27; H, 6.83; N, 5.72%. HRMS m/z Calc. for $C_{27}H_{34}N_2O_5Si$: M, 494.2237. Found: M^+ , 494.2232).

A solution of TBAF in THF (1 M; 0.07 mL, 0.073 mmol) was added dropwise to a solution of the above 3-unsubstituted naphthoimidazole (18 mg, 0.036 mmol) in THF at room temperature. The mixture was stirred for 5 min at room temperature, salcomine (1 mg, 0.004 mmol) was added, and the whole was stirred for 1 h at room temperature. The solvent was evaporated off, and the crude product was purified by column chromatography (CHCl₃–MeOH 20:1) to give the target compound 17 (5 mg, 35%), mp 261–262 °C (yellow needles, recrystallized from AcOEt) (Calc. for C₂₁H₁₈N₂O₆·1/2H₂O: C, 62.53; H, 4.75; N, 6.94. Found: C, 62.62; H, 4.59; N, 6.76%. HRMS *m*/*z* Calc. for C₂₁H₁₈N₂O₆: *M*, 394.1165. Found: M⁺, M⁺, 394.1166).

in vitro Growth inhibition of 39 human cancer cell lines

39 Human cancer cells were five breast cancers (HBC-4, BSY-1, HBC-5, MCF-7, and MDA-MB-231), six central-nervoussystem cancers (U251, SF-268, SF-295, SF-539, SNB-75, and SNB-78), five colon cancers (HCC2998, KM-12, HT-29, HCT-15, and HCT-116), seven lung cancers (NCI-H23, NCI-H226, NCI-H522, NCI-H460, A549, DMS273, and DMS114), melanoma (LOX-IMVI), five ovarian cancers (OVCAR-3, OVCAR-4, OVCAR-5, OVCAR-8, and SK-OV-3), two renal cancers (RXF-631L and ACHN), six stomach cancers (St-4, MKN1, MKN7, MKN28, MKN45, and MKN74), and two prostate cancers (DU-145 and PC-3). The cells were plated at appropriate density in 96-well plates in RPMI-1640 medium with 10% foetal bovine serum, and allowed to attach overnight. Kealiiquinone and the regio-isomer 17 were dissolved in DMSO, and further diluted with RPMI-1640 medium. The cells in the wells were treated with the samples at concentrations of 0.01 to 100 µM. After 48 h, cell growth was determined by means of the sulforhodamine B assay described by Skehan et al. 13 Data treatment followed the method described by Monks et al. 14 The LC₅₀ is given as the concentration at which only 50% of the cells are viable, the GI_{50} -value is given as the concentration that yields 50% growth, and the total growth inhibition (TGI) is given as the concentration at which no growth is observed.

Acknowledgements

We are grateful to Dr Takao Yamori (Japanese Foundation for Cancer Research, Screening Committee of New Anticancer Agents supported by Grant-in-Aid for Scientific Research on Priority Area 'Cancer' from The Ministry of Education, Science, Sports and Culture of Japan) for evaluation of antitumour activity. This research was financially supported in part by the Frontier Research Program of the Ministry of Education, Science, Sports and Culture of Japan.

References

- J. R. Lewis, *Nat. Prod. Rep.*, 1992, 9, 81; D. J. Faulkner, *Nat. Prod. Rep.*, 1992, 9, 323; K. Bartik, J. C. Breakman, D. Daloze, C. Stoller, J. Huysecom, G. Vandevyver and R. Ottinger, *Can. J. Chem.*, 1987, 65, 2118; S. Tsuji, K. L. Rinehart, S. P. Gunasekera, Y. Kashman, S. S. Cross, M. S. Lui, S. A. Pomponi and M. C. Diaz, *J. Org. Chem.*, 1988, 53, 5446; S. Sakemi and H. H. Sun, *J. Org. Chem.*, 1991, 56, 4304
- (a) P. Ciminiello, E. Fattorusso, S. Magno and A. Mangoni, *Tetrahedron*, 1989, 45, 3873; (b) K. A. Alvi, B. M. Peters, L. M. Hunter and P. Crews, *Tetrahedron*, 1993, 49, 329; (c) S. Carmely and Y. Kashman, *Tetrahedron Lett.*, 1987, 28, 3003; (d) S. Carmely, M. Ilian and Y. Kashman, *Tetrahedron*, 1989, 45, 2193; (e) R. K. Akee, T. R. Carrol, W. Y. Yoshida and P. J. Scheuer, *J. Org. Chem.*, 1990, 55, 1994; (f) A. R. Carrol and B. F. Bowden, *Aust. J. Chem.*, 1993, 46, 1229; (g) A. Plubrukarn, D. W. Smith, R. E. Cramer and B. S. Davidson, *J. Nat. Prod.*, 1997, 60, 497.
- I. Kawasaki, M. Yamashita and S. Ohta, J. Chem. Soc., Chem. Commun., 1994, 2085; I. Kawasaki, M. Yamashita and S. Ohta, Chem. Pharm. Bull., 1996, 44, 1831.

- 4 I. Kawasaki, H. Katsuma, Y. Nakayama, M. Yamashita and S. Ohta, *Heterocycl. Commun.*, 1996, **2**, 189; I. Kawasaki, H. Katsuma, Y. Nakayama, M. Yamashita and S. Ohta, *Heterocycles*, 1998, **48**, 1887.
- I. Kawasaki, N. Taguchi, T. Yamamoto, M. Yamashita and S. Ohta, Tetrahedron Lett., 1995, 36, 8251; I. Kawasaki, N. Taguchi, T. Yamamoto, M. Yamashita and S. Ohta, Chem. Pharm. Bull., 1997, 45, 1393
- 6 S. Ohta, N. Tsuno, K. Maeda, S. Nakamura, N. Taguchi, M. Fujieda, K. Futamura, T. Yoshida, M. Yamashita and I. Kawasaki, *Tetrahedron Lett.*, 2000, 41, 4623.
- 7 S. Ohta, N. Tsuno, S. Nakamura, N. Taguchi, M. Yamashita, I. Kawasaki and M. Fujieda, *Heterocycles*, 2000, **53**, 1939.
- 8 B. A. Horenstein, R. F. Zabinski and V. L. Schramm, *Tetrahedron Lett.*, 1993, **34**, 7213.
- 9 (a) S. Ohta, T. Yamamoto, I. Kawasaki, M. Yamashita, H. Katsuma, R. Nasako, K. Kobayashi and K. Ogawa, *Chem. Pharm. Bull.*, 1992, **40**, 2681; (b) S. Ohta, T. Yamamoto, I. Kawasaki, M. Yamashita, Y. Nagashima and T. Yoshikawa, *Chem. Pharm. Bull.*, 1994, **42**, 821.
- 10 (a) T. Wakamatsu, T. Nishi, T. Ohnuma and Y. Ban, Synth. Commun., 1984, 14, 1167; (b) M. Hanaoka, W. J. Cho, S. Yoshida and C. Mukai, Chem. Pharm. Bull., 1989, 37, 857; (c) M. Hanaoka, W. J. Cho, S. Yoshida and C. Mukai, Chem. Pharm. Bull., 1991, 39, 1163.
- 11 T. Yamori, A. Matsunaga, S. Sato, K. Yamazaki, A. Komi, K. Ishizu, I. Mita, H. Edatsugi, Y. Matsuba, K. Takezawa, O. Nakanishi, H. Kohno, Y. Nakajima, H. Komatsu, T. Andoh and T. Tsutuo, *Cancer Res.*, 1999, 59, 4042.
- 12 T. Yamori, T. Ando, S. Uehara, M. Ono, M. Kawano, I. Saiki, M. Naito, Y. Hayakawa, T. Tsuruo, Y. Sugimoto, K. Kiyomiya and T. Majima, *Gan To Kagaku Ryoho (Jpn. J. Cancer Chemother.*), 2000, **27**, (suppl. 1), 1.
- 13 P. Skehan, R. Storeng, D. Scudiero, A. Monks, J. McMahon, D. Vistica, J. T. Warren, H. Bokesch, S. Kenney and M. R. Boyd, J. Natl. Cancer Inst., 1990, 82, 1107.
- 14 A. Monks, D. Scudiero, P. Skehan, R. Shoemaker, K. Paull, D. Vistica, C. Hose, J. Langley, P. Cronise, A. Vaigro-Wolff, M. Gray-Goodrich, H. Campbell, J. Mayo and M. Boyd, J. Natl. Cancer Inst., 1991, 83, 757.